
Two Approaches to Forecasting Fraud Applications
Yupei Shu, Miao Wang, Lingfei Zhang
Under Supervision of Prof. Ali Hirsa and Moffy Jiang from CraiditX

Introduction Graph Embedding Sequential Embedding
Data Data

Methods

Evaluation Results

Before the moment when Artificial Intelligence was applied to fraud
detection, loan businesses usually hired employers to manually
check customers’ static information–citizenship, age, employment,
and income. With the high development of the Internet, more and
more online lending took place. The involvement of AI in this topic
would help to collect dynamic information like web page sequences
and make predictions in a more efficient way.

In our project, we will outline the use of sequential time series data
and basic information data to determine unacceptable loan
applications. An unacceptable application is classified in two ways: a
fraudulent application, or an application where the applicant is not
creditworthy. Sequential data is classified as data collected from
users completing loan applications where their time spent on the
application was tracked. The basic data tracked if the client was
new, how many days overdue the application was, and the
submission time of the application.

The methods used to determine these two outcomes were derived
using various graph embedding and sequential embedding
techniques. Here, we will provide a comprehensive analysis and
comparison of how different graph embedding models can find
potential group and individual risks, and automatically extract
features from loan application data. Also, we will develop machine
learning and deep learning models to extract features from
sequential data and compared their effectiveness for fraud detection.

Future Works

• The provided raw dataset comes from CraiditX’s internal client data and consists of 35,373 loan
applications. Each line of the raw data text file contains the whole or partial data for an individual
application in the format shown in the figure, and all the data are already encoded.

• For a given application, its related device may be shared or have contacts or calls connections with
another application, thus creating the basis for network analysis.

• Our dataset is highly imbalanced, where only 3% of the observations were labeled as fraudulent vs.
97% were labeled as non-fraudulent.

Graph Convolutional
Networks (GCN)
• The work is based on a model by Kipf and Welling. Such problems

as classifying nodes in a graph can be framed as graph-based semi-
supervised learning.

• We need two input matrices built from the raw data: the feature
matrix and the adjacent matrix.

• As for the dataset we used for this model, we only keep the records
that are not rejected, which are 14149 in total. Since if a record is
rejected, there is no chance for it to be overdue.

• We generated two models, and we simply call them model 1 and
model 2. Model 2 is an improved GCN model comparing with model
1. Here are the differences between the two:

Semi-supervised Graph Attentive Network (SemiGNN)
• SemiGNN by Wang et al. learns weightings of each dataset dynamically instead of manually setting weights for different

datasets in the GCN model.
• SemiGNN model is performant on imbalanced datasets since we found our dataset is highly imbalanced.
• SemiGNN aggregates across different datasets (“views”). Variables in each dataset are translated into adjacency matrices

that form a multi-view graph.
• The GCN model and the SemiGNN model share the same feature matrix, but the their adjacent matrices are different. A very

straightforward difference is that the adjacency matrix for GCN model is a single matrix, and for the SemiGNN model, we
generate multiple views according to different variables.

• We need to apply the sampling methods to generate sample view matrices for evaluation purpose, because the original
adjacent matrices(views) are too large and the computation is impossible. Here we used 3-hop Random Walk sampling
method.

Temporal Graph Analysis,
MIDAS & MIDAS-R
• Microcluster-Based Detector of Anomalies in

Edge Streams (MIDAS) is an anomaly
detection method that identifies anomalies
based on microclusters or sudden groups of
suspiciously similar edges using constant time
and memory. The method is based on an
assumption that fraudulent activities occur in
microclusters of suspiciously similar edges.

• MIDAS-R adds time flexibility and slightly
different anomalous node scores to its
algorithm. MIDAS-R allows the past edges to
be incorporated into fraud detection of the
most current time by adjusting the weights of
the edges.

• MIDAS and MIDAS-R were both based on
homogeneous graph.

Inductive Graph Models: GraphSAGE &
FI-GRL
• Both models could be utilized to build a heterogeneous graph

network.
• GraphSAGE learns aggregator functions, which would induce

the embedding of a new node given its features and
neighborhood. While algorithms like MIDAS, it needs to
update the previous data structure for the new edge and
retrieve updated counts.

• Fast Inductive Graph Representation Learning (FI-GRL),
proposed by Jiang et al., is a fast and weightings of flexible
framework that can preserve important graph topological
information with provable theoretical guarantees and can be
naturally generalized to unseen nodes. There are two stages
in this framework: decoupling and feature extraction.

• Feature Embedding: to preserve the temporal feature of the
graph, we deployed a fixed-length sliding window and pre-
determined step size. We finally passed the embeddings into
an XGBoost classifier to perform binary classification.

The difference in the feature matrix.

The difference in the adjacent matrix.

GCN with Extra Features
• One potential way to improve it is to try analyzing subgraphs. The main idea is to further analyze the characteristics inside a small community by applying the Personalized Pagerank

Algorithm and Dense Graph Community Detection Algorithm, and import our results to GCN model as new features.

Four New Sampling Techniques
• Random Walk with Restart, Random Jump Sampling, PageRank Node Sampling, Random Degree Node Sampling.
• We also evaluate these different sampling methods on GCN model.

GraphSAGE
sample and
aggregate
approach.

Intuition of FI-GRL.

FI-GRL
framework.

• The data consists of 230,000 records, 200,000 of which is used for training and 30,000 is used for testing.
• The features are limited. The sequential features are: the name of the current page (categorical), the start time a user

visited the page, the end time we visited, process ID, and session ID. Non sequential features consist of number of
days the loan was overdue, new applicant (or not), submission date time, and default (categorical).

• The training dataset is a labeled set with each entry denoting if the application was a default or not, while the testing set
is unlabeled.

• The data is in json format with two elements for each entry: Order Info and Data. Order Info is a description about the
application whereas Data is the information recorded in the application.

• The dataset is highly imbalanced.

Key, value pairs for the Order Info application data.

Key, value pairs for the Data
in the application data.

Baseline Models
• Unsupervised learning classification algorithms.
• Weighted Random Forest, is a decision tree model that

incorporates tree-level weights to emphasize more accurate
trees in prediction and calculation of variable importance.

• KNN model, which is a non-parametric supervised learning
model where the predicted data point is classified according
to the class most common to its k nearest neighbors. KNN
can be useful in predicting transitions between different
pages in our page sequence data. If the page sequence
order is abnormal, then that may be a predictor of fraudulent
application activity.

• Bi-LSTM model is composed of two independent RNNs, one
with information flowing forward and one flowing backwards.
The Bi-LSTM model used three bi-directional LSTM layers
using the page sequences. Each layer had a different
encoding technique; Markov Transition Field (MTF),
Convolutional Neural Network (CNN), or plain vanilla LSTM.

Random forest classifier
uses majority voting of the
predictions made by
randomly created decision
trees to make the final
predictions.

Deep Learning Methods
• We focused on deep learning methods with LSTM, RNN, CNN, and

autoencoders.
• For data preprocessing, One Hot Encoding helped turn the categorical

data into a binary-like format to be processed by a machine learning
algorithm more efficiently. We gravitated towards a Neural Network with
LSTM layers, Bi-LSTM layers, and LSTM with attention layers.

• A CNN model was created with MTF and Gramian Angular Field (GAF),
another type of time series to image transformation, which helped turn
the sequence data into image data to feed the model.

• LSTM and CNN with autoencoders, another method of encoding data for
more efficient model consumption.

• An important part of using image classification models is to structure the
data into an image-like data structure.

A Bi-Directional LSTM
model with information
flowing forward and
backwards through
activation layers.

Transformer Models
• We focused on how to improve performance from a feature extraction and model optimization perspective. The main focuses

were Word2Vec embedding and Transformer models with Multi-Head Attention mechanisms. We also introduced a new
dataset of 30,000 entries with higher fraud occurrences. We called this dataset “low income” and the original dataset was called
“high income”.

• Word2Vec can map words to a vector of real numbers which can then be processed by a deep learning algorithm.
• A Transformer model with multi-head attention was used to link the page type embeddings with page stay time. Both are time-

series features crucial for research on the customer behaviors before submitting a loan application.
• The Transformer model works in two parts: an encoder and a decoder. The word2vec embedded data is passed through N

encoder layers consisting of a feed forward network and a layer normalization. The data is then decoded with another feed
forward network and multi-layer attention.

The
Architecture
of Attention-
based LSTM.

Transformer model with
encoder and decoder with
multi-head attention.

Multi-Head Attention
consists of linear layers
split into heads,
followed by scaled dot-
product attention,
concatenation of heads
and a final linear layer.

Feature Engineering
• To the CNN we added Conv2D, a layer where

a filter is applied to the elements of a matrix
and results in an output of tensors that can be
better processed by the CNN, and LSTM
layers and achieved better results.

• In order to determine relationships between
variables and developed it, we also figured
out how to optimize the number of categories
by splitting continuous data variably with
weights as opposed to uniformly.

A CNN model
with LSTM
layers.

NLP
• BERT is a language modeling and sentence prediction tool mainly used in

NLP, the continued approach of the problem as an NLP one makes sense
because the sequential time data is analogous to words and sentences.

• Compared to traditional embedding models, which read texts either from left-
to-right or right-to-left, BERT reads the entire sentence at once and is able
to understand the full context of the words.

• We tried a new feature extraction technique, Sequence Graph Transform
(SGT). SGT can extract a varying amount of short-to long-term
dependencies without increasing computations. SGT features can yield
significantly superior results in sequence clustering and classification.

• To maximize the efficacy of SGT, we categorized the data into bins and
buckets for better model performance. PCA was an effective way to explain
most of the variance of the model while keeping only the most important
features.

• We fine tuned the dictionary created by the SGT and ran the CatBoost
model, which enables gradient boosting on decision trees.

A BERT masked
language model.

SGT feature
extraction.

• AUC score of ROC curve. AUC calculates the area under the ROC
curve which plots the true positive rates and false positive rates at a
range of thresholds from 0 to 1. The thresholds represent different
prediction cutoffs for classification of the response variable to a 0 (non-
fraud) or a 1 (fraud). The closer the AUC is to 1, the better the model
is.

• KS score. KS score gives an assessment of a distance of two
samples. Here our KS score = TPR - FPR. Therefore, the closer the
KS score to 1, the better the model is.

• New Evaluation Method. It is first adopted by CraiditX. We rank the
predicted logits (value of the logit function) which are the output of the
second layer in descending order and look at the number of fraud
labels detected among the top 1, 3, 5, and 10th percentile. An ideal
model should make all fraud data have top 10 percent logits, since the
percentage of all fraud data is less than 10 percent. From a business
perspective, this method represents a trade-off between rejecting the
top x percentile and reducing default probabilities of the accepted
sample by a certain percent.

• The Precision-Recall AUC score(PR score) is a value between 0 and
1, and a score of 1 represents a model with perfect skill. We could
obviously note that PR curves does not consider true negatives, which
makes sense because in fraud detection we are usually concerned
more about if our model is capable of identifying a rare fraud once it
arises.

• Accuracy Rate, AUC and
KS score are used to
evaluate the results of
models.

• AUC and KS score
weights more than
Accuracy Rate, since we
could always get a high
value of Accuracy Rate
when labeling all the
samples in testing set as
the majority class.

• The top performing models use Sequence Graph Transform (SGT) with a
variation of some sort of Gradient Boosting Model (GBM). LGBM and CatBoost
are both variations of GBMs.

• SGT is able to extract long term dependencies from the data and convert them into
a sequence of events, usually denoted by an alphabetical mapping of events to
letters.

• The benefit of LGBM is that it is more computationally efficient than traditional GBM
models because it uses leaf-wise tree evolution instead of level-wise tree evolution.

• CatBoost then separates the SGT sequences into categories and penalizes a
misclassified category on an iteration and implements an overfitting detector to
ensure that the leaf-wise growth does not conform to the full entry perfectly.

• Overall the use of GBM together with SGT is a great combination for predicting
sequences, especially ones like our page view and cross page movement because
it converts them into shorter sequences with SGT and then lightly iterates over the
best model until the optimal one is converged upon.

Methods

Evaluation

Results

• GraphSAGE and FI-GRL model outperform the other models
according to the AuROC score and KS score.

• GraphSAGE model receives a high True Negative rate, but receives a
much less True Positive rate than FI-GRL model.

• The results from GraphSAGE and FI-GRL models show that node
features provide critical information to the learning algorithm.

• MIDAS demonstrates obvious lower AuROC and KS scores compared
to the baseline model and other models, suggesting that the utilized
structure and features may not be a suitable fit for the task.

Graph embedding part:
• For GraphSAGE and FI-GRL models, our current results are based

on a subset of the data, excluding the 'call_info' component.
However, we encountered a challenge with StellaGraph algorithm,
which requires unique node IDs. In our case, each node is connected
to a different set of nodes based on the timestamp, and duplicate IDs
hold significance. Consequently, GraphSAGE and FI-GRL lack the
capability to incorporate temporal relationships. To address this issue,
we can consider modifying the structure of GraphSAGE and FI-GRL
to accommodate temporal links, or update StellaGraph to allow for
self-loops.

• Regarding MIDAS and MIDAS-R, it is essential to investigate why our
current structure is unsuitable for our task.

Sequential embedding part:
• Deep learning models: These models can impose more intricate

constraints on time-based features while applying techniques such as
fake label generation. Additionally, attention-based models can be
explored further.

• Transformer: We can attempt to utilize the preprocessed data from
Word2Vec in a plain vanilla LSTM model. Further emphasis can be
placed on mapping non-sequential features of the data to sequential
features.

• BERT: Although we used PCA for dimensionality reduction, we
encouraged to find the optimal number of categories for the
continuous features. Despite the unconvincing results of the NLP
models, we still saw potential in approaching this problem as a NLP
problem. Trying a Stochastic Context Free Grammar (SCFG) model
to see what other NLP methods could improve the accuracy and
results. Lastly, creating more sequences that take into account
interactions between different features to feed the SGT model.

